
NCRA Compute Cluster
(Bhima) | User Document
We are using OpenPBS (Portable Batch System) for NCRA Compute Cluster for workload
management system, whcih is designed to manage and schedule the execution of jobs on a
compute cluster. This guide provides basic instructions for users to efficiently use OpenPBS.

Bhima Cluster Architecture
Total CPUs in cluster are 248 cores (8 cores reserved for cluster management)

Compute Nodes configuration - 3 Numbers

CPU: Intel(R) Xeon(R) Platinum 8358
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 32
No. of Sockets: 2
RAM: 2 TB

GPU Node configuration - 1 Number

CPU: Intel(R) Xeon(R) Platinum 8358
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 32
No. of Sockets: 2
GPU: NVIDIA H100 - 80GB
RAM: 1TB

Storage 600 TB total

Each user will have a specific quota in the /home/<your_username> directory. This directory
is where you should store everything, including your processing data, processed data, and
codes.
There is no separate /data directory; instead, everything should be saved within your
/home/<your_username> directory. So, please make sure that all your work, including data
and code, is organized in this location.

/scratch area is a common area writable by everyone and will be cleared in 7 days -
backup up your data (we will not send any reminders about this area utilization)

Other Information

Bhima (bhimacluster) login is different from NCRA dhruva/mail LDAP login, you need to
request of this cluster user account and get approval from Chair CFC.
there will be no backup of any of your data, please make sure you take regular backups.
System administrators or any computer staff are not responsible for bugs, memory leaks,
garbage collector issues, security vulnerabilities, or any other issues in user code. Please
review and test your code thoroughly before submitting it to the cluster.

Table of Contents
1. Getting Started
2. Submitting Jobs
3. Monitoring Jobs
4. Job Control
5. Resource Requests
6. PBS Scripts
7. Common Commands
8. Best Practices
9. "module" command

10. Support
11. Policy

1. Getting Started
Accessing the Cluster
To access the cluster, use SSH (Secure Shell) to connect to the head node:

Replace `your_username` with your actual username and `cluster_address` with the address of the
cluster.

2. Submitting Jobs
Basic Job Submission

ssh your_username@cluster_address

ssh ratnakumar@bhima.ncra.tifr.res.in

To submit a job, use the `qsub` command followed by the job script:

3. Monitoring Jobs
Checking Job Status
To check the status of your jobs, use the `qstat` command:

To get detailed information about a specific job:

Checking Quotas Status

4. Job Control
Deleting Jobs
To delete a job, use the `qdel` command followed by the job ID:

Important Note: Any jobs executed or run without PBS scheduling will be terminated
without any warning. Please ensure that all job submissions go through the PBS scheduler to
avoid any disruptions.

qsub my_script.pbs

qstat

qstat -f job_id

[ratnakumar@bhima03 ~]$ /soft/my_quota
Disk quotas for usr ratnakumar (uid 415800004):
 Filesystem used quota limit grace files quota limit grace
/home/ratnakumar
 75.02G 95G 100G - 150556 0 0 -
uid 415800004 is using default file quota setting

ratnakumar@bhima03 ~]$ /soft/my_quota

qdel job_id

Holding and Releasing Jobs
To hold a job:

To release a held job:

5. Resource Requests
Specifying Resources for CPU
Specify resources in the job script or on the command line. For example:

This requests 2 nodes with 4 processors per node and a wall time of 1 hours.

Specifying Resources for GPU
Sample PBS job submission script:

qhold job_id

qrls job_id

#PBS -l nodes=2:ppn=4,walltime=01:00:00

#!/bin/bash
#PBS -N cuda_integral_job
#PBS -l select=1:ngpus=1:host=bhima04
#PBS -l walltime=02:00:00
#PBS -q gpu
#PBS -j oe
#PBS -o cuda_output.log

Load CUDA module (if required)
module load cuda/12.3
module load python/3.8

Navigate to the working directory
cd $PBS_O_WORKDIR

Run the program
python3.8 check_gpu.py --gpu --size 50000

Following `-l select` and `-q gpu` are important flags for GPU scheduling your job in bhima04
GPU Node.

Common Resource Requests
Nodes and Processors: `nodes=number_of_nodes:ppn=processors_per_node`
Memory: `mem=memory_amount`
Wall Time: `walltime=hh:mm:ss`

6. PBS Scripts
Basic Script Structure

With CPUs and memory specification

#!/bin/bash
#PBS -N cuda_integral_mem_job
#PBS -l select=1:ncpus=4:ngpus=1:mem=32gb:host=bhima04
#PBS -l walltime=02:00:00
#PBS -q gpu
#PBS -j oe
#PBS -o cuda_output.log

Load CUDA module (if required)
module load cuda/12.3
module load python/3.8

Navigate to the working directory
cd $PBS_O_WORKDIR

Run the program
python3.8 check_gpu_cpu_mem.py --gpu --size 50000

Only bhima04 Node is having NVIDIA H100 GPU - use python3.8 and pip3.8 for gpu node

PBS -l select=1:ngpus=1:host=bhima04

#PBS -q gpu

A basic PBS script includes resource requests, environment settings, and job commands:

Sample CPU and node (either bhima01, bhima02 or bhima04) specific
PBS submit script
Usually, all users are running code on default login node bhima/bhima03. It is better to see which
nodes are free and set the host flag to either bhima01, bhima02 or bhima04. - We are working to
do it automatically and will update this document once it gets enabled.

Sample CPU PBS submit script

#!/bin/bash
#PBS -N job_name
#PBS -l nodes=1:ppn=4,walltime=01:00:00
#PBS -q workq
#PBS -j oe

cd $PBS_O_WORKDIR
module load some_module

./your_executable

#!/bin/bash
#PBS -N job_name
#PBS -q workq
#PBS -l select=1:host=bhima02:ncpus=10
#PBS -j oe
#PBS -V
cd $PBS_O_WORKDIR

source /home/ratnakumar/.bashrc
python3 run_some_parallel_code.py

#!/bin/bash
#PBS -N job_montecarlo
#PBS -q workq
#PBS -l nodes=4:ppn=4
#PBS -j oe
#PBS -V
cd $PBS_O_WORKDIR
mpiexec -np 16 -machinefile $PBS_NODEFILE ./mpi_montecarlo

Common Directives

7. Common Commands

8. Best Practices
1. Test Scripts Locally: Test your scripts on a local machine before submitting to

the cluster.

2. Specify Resources Accurately: Request only the resources you need to optimize
cluster utilization.

3. Monitor Jobs Regularly: Keep an eye on your jobs to handle any issues promptly.

4. Cleanup: Remove unnecessary files and jobs to keep the cluster environment
clean.

9. "module" command
To improve the efficiency and management of software installations on our cluster, we are
introducing a new policy regarding software management:

Software Policy
1. No Individual Software Areas in /home/username :

Please refrain from installing or maintaining individual copies of software in your
/home/username directories. This practice leads to redundancy, wasted storage, and

- `#PBS -N job_name` - Sets the job name.
- `#PBS -l nodes=1:ppn=4` - Requests 1 node with 4 processors.
- `#PBS -q workq` - Specifies the queue - we have 'workq' for cpu based and 'gpu' queue
- `#PBS -j oe` - Merges standard output and error files.

- Submit a job: `qsub job_script.pbs`
- Check job status: `qstat`
- Delete a job: `qdel job_id`
- Hold a job: `qhold job_id`
- Release a job: `qrls job_id`
- Show job details: `qstat -f job_id`

increased maintenance overhead.
2. Centralized Software Installation in /soft :

We will maintain a centralized software repository in the /soft directory. All commonly
used software will be installed here and configured for easy access by all users. Please let
us know what all software are required, we will install them as per the requirement - write
to system administrator with subject as "Bhima software installation"

3. Accessing Software via module load :
To use any software from the centralized /soft directory, simply use the module load
<software_name/vesrsion> command. This ensures that everyone is using the same, up-to-
date version of the software, and it helps to optimize our resource utilization, also if
required to maintain the same software with multiple versions.

Benefits
Reduced Redundancy
By avoiding multiple installations of the same software, we can free up storage space and
reduce duplication.
Easier Management
A central repository allows for easier updates, patches, and management of software.
Consistent Environment
All users will have access to the same versions of software, reducing compatibility issues
and ensuring consistency in results.

Implementation
1. Migration to /soft

If you have software installed in your /home/username directory that you believe is useful
to others, please inform the system administrator. We will help migrate the software to
the /soft directory and make it available to everyone.

2. Requesting New Software
If you need new software that is not currently available in /soft , please submit a request
to the system administrator with subject as "Bhima software installation". We will
evaluate the request and, if appropriate, install it centrally.

3. Regular Updates
The /soft directory will be regularly updated with the latest versions of software, ensuring
you have access to the most current tools.

Brief Explanation of Modules
Modules are a system used in Unix-like operating systems, including many Linux distributions, to
manage the environment for different software packages. The Environment Modules package
allows users to dynamically modify their environment (like PATH , LD_LIBRARY_PATH , etc.) by loading
and unloading module files. This is particularly useful on multi-user systems, such as clusters,
where multiple versions of software might be needed by different users.

mailto:ratnakumar@ncra.tifr.res.in
mailto:ratnakumar@ncra.tifr.res.in
mailto:ratnakumar@ncra.tifr.res.in

How Modules Work?
Module Files: These are scripts that set or unset environment variables, typically stored
in a directory like /etc/modulefiles or /usr/share/modules/modulefiles or /soft/modulefiles
Loading a Module: When you load a module using module load <module_name> , the
module file modifies your environment so that the specified software package or version
becomes active.
Unloading a Module: Using module unload <module_name> , the changes made by the
module file are undone, returning your environment to its previous state.

Example of Module file

#%Module1.0###
##########
##
use.own modulefile
##
proc ModulesHelp { } {
 puts stderr "\tThis module file will add \$HOME/privatemodules to the"
 puts stderr "\tlist of directories that the module command will search"
 puts stderr "\tfor modules. Place your own module files here."
 puts stderr "\tThis module, when loaded, will create this directory"
 puts stderr "\tif necessary."
}

module-whatis "adds your own modulefiles directory to MODULEPATH"

eval set [array get env HOME]
set ownmoddir $HOME/privatemodules

create directory if necessary
if [module-info mode load] {
 if { ! [file exists $ownmoddir] } {
 file mkdir $ownmoddir
 set null [open $ownmoddir/null w]
 puts $null
"#%Module##
############"
 puts $null "##"
 puts $null "## null modulefile"
 puts $null "##"

"module" command usage/example
Load a Module:
module load <module_name>
Unload a Module:
module unload <module_name>
List Available Modules:
module avail
Show Currently Loaded Modules:
module list

Advantages of "module"
Easy Software Management: You can switch between software versions without
manually changing environment variables.
Centralized Software Installation: Instead of duplicating software installations, you
can load the same software from a shared directory.
User-Specific Environments: You can create and manage their environment without
affecting others on the system.

10. How to user PSRSOFT?
To use the PSRSOFT commands (includes tempo2 & presto) please do the following:

Check the file /soft/psrsoft.bashrc
contents of /soft/psrsoft.bashrc

export PSRSOFT=/soft/psrsoft/usr

export PRESTO=$PSRSOFT/src/presto
export LD_LIBRARY_PATH=$PSRSOFT/lib:$PRESTO/lib/:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export

 puts $null "proc ModulesHelp { } {"
 puts $null " puts stderr \"\tThis module does absolutely nothing.\""
 puts $null " puts stderr \"\tIt's meant simply as a place holder in your\""
 puts $null " puts stderr \"\tdot file initialization.\""
 puts $null "}"
 puts $null ""
 puts $null "module-whatis \"does absolutely nothing\""
 }
}

module use --append $ownmoddir

PATH=$PSRSOFT/bin:/soft/plotres/:$PRESTO/bin/:/soft/psrsoft/usr/src/fake_simulation/bin:/soft/psrsoft/
usr/src/ffancy:/usr/local/cuda/bin:$PATH

export TEMPO=$PSRSOFT/src/tempo
export TEMPO2=$PSRSOFT/src/tempo2
export SIGPROC=$PSRSOFT/src/sixproc
export PGPLOT_DIR=$PSRSOFT/src/pgplot
export PGPLOT_FONT=$PGPLOT_DIR/grfont.dat

either copy the contents of this file to your .bashrc
OR you can run as sh +x /soft/psrsoft.bashrc

11. Policy
Policy for allocating resources in the new NCRA compute servers

Version 2.0, Date: 26 July 2024

New Compute Server Specifications:

Server 1: 64 cores, 2TB RAM
Server 2: 64 cores, 2TB RAM
Server 3: 64 cores, 2TB RAM
Server 4: 64 cores, 1TB RAM, Nvidia H100 80GB GPU
Storage: 600 TB Usable

 User Policy Framework by User Group (No limit on memory):

User Type Resource
Allocation

Usage Limits Storage Retention Period

Faculty Maximum of 96 cores
per user; Access to
GPU resources on
Server 4*

Up to 5000 CPU
hours per month,
following which jobs
will be run on lower
priority.

10 TB 3 years

Postdoc 5 TB 5 years

Regular students 5 TB 5 years

Group processing No reserved computing resources

* Jobs requiring GPU would be automatically allocated in server 4 with "#PBS -q gpu" flag. An
appropriate flag needs to be included for such jobs while submission.

This resource allocation policy will be revised upwards in 2-3 months, depending on the usage
pattern and occupancy rate of the cores, in order to optimize and make the best use of the
available resources.

Common Policies for All User Groups:

1. User Registration: Users need to request for an account on these servers, separate from
their usual NCRA user account.

2. Job Submission and Queue Management: Jobs must be submitted through Open PBS
with proper resource requests specified. The queue system will enforce the fair share
policy to prevent resource monopolisation.

3. Resource Monitoring: Users must monitor their jobs and ensure they do not exceed
allocated resources. Jobs found consuming more resources than allocated will be
terminated after a warning. Similarly, jobs that are stale/inactive for more than 24 hours
would be terminated after a warning.

4. Maintenance and Downtime: Regular maintenance windows will be communicated to
all users. Plan jobs around these windows to avoid disruptions. Proposing maintenance
twice in a year for electrical UPS maintenance.

5. Administrative Oversight: The computer centre staff will monitor usage patterns and
adjust allocations as necessary to ensure fairness and optimal performance. User
feedback will be collected periodically to refine policies and resource allocation strategies.

6. User Responsibilities:
Adherence to Policies: Users must comply with the outlined policies. Violations
may result in access suspension.
Resource Optimization: Users should optimise their code and resource usage to
maximise efficiency.
Job Management: Ensure jobs are terminated upon completion to free up
resources.

By establishing these detailed policies, we can ensure that all user groups have fair access to
compute resources, enabling productive and balanced use of the infrastructure.

12. Support
For any issues or support, please contact the system administrator
Ratna Kumar N Bollapragada
Email: ratnakumar@ncra.tifr.res.in
Phone: 020-25719251

Revision #45
Created 15 July 2024 10:21:28 by Ratna Kumar Bollapragada
Updated 17 December 2024 06:42:16 by Ratna Kumar Bollapragada

